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1
PACKET DELAY DISTRIBUTION RATE
FILTERING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of the filing date of U.S.
provisional application No. 61/732,541, filed on Dec. 3,
2012, the teachings of which are incorporated herein by ref-
erence in their entirety.

BACKGROUND

1. Field of the Invention

The present invention relates to timing recovery in packet-
based electronic or optical networks.

2. Description of the Related Art

This section introduces aspects that may help facilitate a
better understanding of the invention. Accordingly, the state-
ments of this section are to be read in this light and are not to
be understood as admissions about what is prior art or what is
not prior art.

The need to develop and support reliable timing transport
systems that rely on packet-based transport is growing.
Packet-based transport networks that rely on the ability to
transport high-quality traceable timing typically use times-
tamp-bearing methods such as IEEE1588 or NTP. There have
even been systems implemented that use both a timestamp-
bearing protocol, such as IEEE1588, and a physical-layer
protocol, such as synchronous Ethernet, to improve the accu-
racy of the recovery process at the receiving node. Other
adaptive packet-based timing systems rely on the arrival of
packets as the protocol for transporting frequency-based tim-
ing over packet networks. Due to the adverse aftect of packet
delay variation (PDV) on these packet-based systems, equip-
ment providers want to evaluate the susceptibility and degra-
dation due to PDV on the timing recovery performance of
these systems.

In Study Group 13 Question 15 of the International Tele-
communication Union—Telecommunication Standardiza-
tion Sector (ITU-T), an effort is underway to define PDV
network limits for packet-based timing recovery systems.
Fundamental to the work is the ability to relate existing or new
metrics as a basis to define specific characteristics or changes
in the packet delay distribution of packets that arrive at a
receiving node. Second, a methodology is sought in order to
create specific types of PDV stress conditions that represent
real-world network conditions.

Many packet-based timing recovery systems rely onrecov-
ering timing from those packets that experience the least
network delay over a given sample period. These low-delay
packets are used to determine an “anchor value” that defines
the delay-floor and is the basis for establishing and maintain-
ing timing accuracy or phase stability at the receiving node.
Still, other packet-based timing recovery systems define
anchor values that can be located at other regions of the delay
distribution and not necessarily at the minimum delay value
over a given sample window. Still, other packet-based timing
recovery systems define the anchor value over multiple
sample windows that measure other statistical aspects of the
delay distribution. It is therefore desired to create a network
limit and associated metric that defines an appropriate stress
condition that can be used to evaluate the stability of the
packet-based timing recovery systems as a basis for a stan-
dardized network limit.

Packet-based timing systems can operate in two basic
modes: one-way mode or two-way mode. In a one-way mode
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of operation, only a slave node receives a timing packet flow
from a master node. Due to the inability of a slave node to
know the exact propagation delay between the master node
and the slave node, the resulting anchor value computed by
the slave will reflect a negative time error equal to the propa-
gation delay. In a two-way mode of operation, a slave node
receives a timing packet flow from a master node and sends
measurement packets to and receives measurement packets
from the master node. The slave node then uses the times-
tamps of these measurement packets to (i) compute the one-
way delay between the master node and the slave node and (ii)
remove the negative time error from the computed anchor
value.

To date, a number of ITU-T participants have created con-
tributions that distort various aspects of the packet delay
distribution used to determine the anchor value. For example,
for timing recovery systems that compute anchor values at or
near the delay-floor, various ways have been proposed to
create stress conditions that modulate the packet delays of the
delay-floor packets. Some vendors have proposed modulat-
ing the delays of delay-floor packets by a slowly varying sine
wave with a fixed or varying amplitude and frequency. Others
have proposed using a statistical means of doing the same. At
this time, ITU-T is considering developing a PDV metric that
addresses those packets within 150 microseconds of the
delay-floor. Numerous contributions have been submitted to
ITU-T that either deterministically or statistically modify the
delays of packets in this range to create a stress condition at
the timing recovery process at the receiving node.

The fundamental issue with the current proposals is the
lack of agreement that these stress conditions represent real-
world conditions. The key to defining a suitable stress condi-
tion stems from the statistical filtering process used at the
receiving node to recover a packet-based clock signal. Due to
the proprietary nature of these statistical filtering algorithms,
acommon standardized testing method has not yet been iden-
tified. Specifically, these packet-based clock recovery algo-
rithms define methodology for stabilizing the phase of the
recovered timing signal called an anchor value. Some algo-
rithms define the anchor value relative to the delay-floor of the
received distribution. Still other algorithms may define the
anchor value based on specific statistical or filtering methods
that exclude packet delays near the delay-floor. Therefore, a
testing method that stresses only the delay-floor packets
might not fully evaluate packet recovery algorithms based on
this latter case. A number of PDV metrics have been devised
that examine the delay variation characteristics of packets in
various bands of the delay distribution including Minimum
Time Deviation (MinTDEV), Percentile Time Deviation
(PercentileTDEV), Band Time Deviation (BandTDEV),
Cluster Time Deviation (Cluster TDEV), the Maximum Aver-
age Frequency Error (MAFE), Minimum MAFE (min-
MAFE), Maximum Average Time Interval Error (MATIE)
and Minimum MATIE (minMATIE). Other metrics have also
been developed to describe how the delay-floor anchor value
can change under a variety of real-world network conditions
including Floor Packet Count (FPC) and Floor Packet Percent
(FPP). Therefore, a means of creating stress conditions at the
receiving node for each type of anchor value clock stabilizing
algorithm is desired.

BRIEF DESCRIPTION OF THE DRAWINGS

Other embodiments of the invention will become more
fully apparent from the following detailed description, the
appended claims, and the accompanying drawings in which
like reference numerals identify similar or identical elements.
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FIG. 1 shows a high-level block diagram of a test configu-
ration for testing the clock-recovery process implemented by
a slave node;

FIG. 2 shows a flow diagram of the processing of the packet
filter of FIG. 1 for an implementation that counts only those
received packets that are within the slave node’s delay-tloor
window;

FIG. 3 shows graphical representations of the delay distri-
bution of a packet flow arriving at the slave node of FIG. 1
with and without the packet filtering of the packet filter of
FIG. 1,

FIG. 4 shows a flow diagram of the processing of the packet
filter of FIG. 1 for another implementation that counts only
those received packets that are within the slave node’s delay-
floor window, but adds a fixed amount of delay D to every
received packet to account for packet processing delay by the
packet filter;

FIG. 5 shows a flow diagram of the processing of the packet
filter of FIG. 1 for an implementation that assigns random
values to only those received packets that are within the slave
node’s delay-floor window;

FIG. 6 shows a flow diagram of the processing of the packet
filter of FIG. 1 for another implementation that assigns ran-
dom values to only those received packets that are within the
slave node’s delay-floor window, but adds a fixed amount of
delay D to every received packet to account for packet pro-
cessing delay by the packet filter;

FIG. 7 shows a block diagram of an exemplary test con-
figuration in which the upstream Ethernet link of FIG. 1 is
replaced by a network cloud;

FIG. 8 shows a block diagram of an exemplary test con-
figuration in which (i) the master node of FIG. 1 has been
replaced by a network emulator and (ii) the upstream Ethernet
link of FIG. 1 has been replaced by a non-Ethernet link; and

FIG. 9 shows a block diagram of another exemplary test
configuration in which the master node, the upstream Ether-
net link, and the packet filter of FIG. 1 have been replaced by
a network emulator having a built-in packet filter.

DETAILED DESCRIPTION

The present disclosure provides a methodology for creat-
ing a deterministic or statistical stress condition on packets
with delays within the anchor value window used to recover
timing at a receiving (i.e., slave) node of a packet-based
network. In essence, the density or number of packets with
delays within the anchor value window of a given packet
delay distribution can be deterministically or statistically
reduced to create a stress condition on the slave node’s
packet-based timing recovery process.

For example, some timing-recovery processes that use the
delay-floor as the anchor value involve the application of a
delay-floor window, which is defined as the range of packet-
delay values from the slave node’s current packet delay-floor
to a specified delay threshold above the current packet delay-
floor. Received packets whose packet-delay values are within
the delay-floor window are delay-floor packets that used to
update the recovered clock signal. Received packets whose
packet-delay values are outside the specified delay-floor win-
dow are not delay-tloor packets and are subsequently ignored
by the timing-recovery process, that is, not used to update the
recovered clock signal.

One way to cause a stress condition on a packet-based
timing transport system is to reduce the number of delay-tloor
packets recovered at the slave node. Such a stress condition
can be realized by filtering the packet flow by adding a suffi-
cient amount of delay (e.g., a specified delay offset value
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4

greater than the size of the delay-floor window) to a selected
number or percentage of the packets in the packet flow to
ensure that the delay of those selected packets will be outside
of'the delay-floor window when those selected packets arrive
atthe slave node. The rest of the packets to which the specified
delay offset value has not been added will retain the temporal
and frequency delay variation characteristics of the unfiltered
packet flow.

Packet-based timing recovery systems rely on (at least) the
following factors related to packet delays within the anchor
value window:

The stability of the packets within the anchor value win-
dow: The variation in delay of those packets at or near
the anchor value as defined by the timing recovery algo-
rithm of the slave clock. Also referred to herein as the
PDV distribution or the delay distribution;

The rate of occurrence of packets within the anchor value
window: How often packets occur within the anchor
value window applied as part of the receiving node’s
(slave clock) timing-recovery process; and

Delay shifts of packets within the anchor value window:
Changes in the delay distribution of the received packets
that significantly alter the population of packets within
the anchor value window. For example, a delay-floor
shift typically occurs when the routing path of packets
through the network changes between two physically
different topologies.

Therefore, any method used to reduce the number of packets
that define the anchor value of a packet-based timing recovery
system should be able to address each of these three factors.

The fundamental objective of packet-based timing-recov-
ery systems is the ability to maintain a stable clock output
phase regardless of changes in the propagation delay or delay
distribution of a packet flow between a master node and a
slave node. Packet-based timing systems operate in either the
one-way mode of operation or the two-way mode of operation
to achieve different levels of timing performance as required
by the end application. In the one-way mode of operation, a
slave node will base its timing recovery process on the arrival
of timestamped packets received from a master node. In this
mode of operation, the slave node will syntonize to the master
node’s clock but not fully synchronize since the one-way
delay is unknown to the slave clock. In the two-way mode of
operation, a slave node operates as described in the one-way
mode but also sends measurement packets to the master node
which are processed by the master node and sent back to the
slave node (e.g., Delay_Request and Delay_Response
mechanism). Therefore, the two-way mechanism supports
the measurement of the symmetric one-way delay between a
master node and a slave node and allows the timing recovery
process to synchronize to the master node clock. For each of
these modes of operation, the slave node’s recovered clock
phase stability is equally important to the end application.

Clock phase stability is typically defined in terms of an
MTIE mask. Since most packet-based timing receivers
update their output clock based on the availability of packets
with delays within the anchor value window, the present
disclosure provides a stress methodology that (deterministi-
cally or statistically) controls the availability of packets with
delays within the anchor value window over a given time
interval. In addition, since the variation of packets with delays
within the anchor value window may need to comply with
metrics that specify PDV network limits, such a stress meth-
odology should preserve the temporal and frequency delay
variation characteristics of the unfiltered packet flow.

FIG. 1 shows a high-level block diagram of a test configu-
ration 100 for testing the clock-recovery process imple-
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mented by slave node 150, i.e., the device under test (DUT) in
this test configuration. In addition to slave node 150, test
configuration 100 includes master node 110, packet filter 130,
and test equipment 180, which may include an oscilloscope.
In one possible implementation, master node 110 and packet
filter 130 are interconnected by a first Ethernet link 120, and
packet filter 130 and slave node 150 are similarly intercon-
nected by a second Ethernet link 140, while master node 110
and slave node 150 are respectively connected to test equip-
ment 180 by some other (e.g., non-FEthernet) links 160 and
170 that support direct evaluation of the master and slave
output clock signals.

The clock-recovery process implemented by slave node
150 uses the arrival times and/or embedded timestamps of
packets transmitted by master node 110 to slave node 150 via
Ethernet links 120 and 140 and filtered by packet filter 130, to
establish a current packet anchor value that is itself used to
generate and output a recovered clock signal on link 160. That
clock-recovery process assigns a packet-delay value to each
packet received at slave node 150. Received packets whose
packet-delay values are within a specified anchor value win-
dow are used to update the recovered clock signal. Received
packets whose packet-delay values are outside the specified
anchor value window are subsequently ignored by the timing-
recovery process, that is, not used to update the recovered
clock signal.

In the one-way mode of operation, master node 110 gen-
erates and transmits a flow of packets with embedded times-
tamps at a rate of, for example, 1 packet per second (1 PPS) to
packet filter 130 via Ethernet link 120. At the same time,
master node 110 transmits its master clock signal, used to
generate the embedded timestamps, to test equipment 180 via
link 170. As described more fully below, packet filter 130
filters the packet flow received via Ethernet link 120 to reduce
the number of packets that will fall within the anchor value
window of slave node 150 when those packets arrive at slave
node 150. The resulting filtered packet flow is transmitted
from packet filter 130 to slave node 150 via Ethernet link 140.
Slave node 150 receives the individual packets in the filtered
packet flow and implements its timing-recovery process to
generate and transmit the recovered clock signal to test equip-
ment 180 via link 160. Test equipment 180 compares the
recovered clock signal received via link 160 with the master
clock signal received via link 170 and applies appropriate
processing using applicable metrics, such as time interval
error (TIE), maximum TIE (MTIE), or time deviation
(TDEV), to assess the ability of slave node 150 to generate a
suitable recovered clock signal.

In the two-way mode of operation, master node 110 gen-
erates and transmits a flow of packets with embedded times-
tamps at a rate of, for example, 1 packet per second (1 PPS) to
packet filter 130 via Ethernet link 120. At the same time,
master node 110 transmits its master clock signal, used to
generate the embedded timestamps, to test equipment 180 via
link 170. As described more fully below, packet filter 130
filters the packet flow received via Ethernet link 120 to reduce
the number of packets that will fall within the anchor value
window of slave node 150 when those packets arrive at slave
node 150. The resulting filtered packet flow is transmitted
from packet filter 130 to slave node 150 via Ethernet link 140.

Additionally, the slave node 150 generates and transmits a
flow of packets for the purpose of measuring the one-way
delay between the master node and the slave node at a rate of,
for example, 1 packet every 4 seconds (0.25 PPS) to the
packet filter 130 via Ethernet link 140. The packet filter 130
filters the packet flow received via Ethernet link 140 to (i)
reduce the number of packets that fall within the anchor
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window of slave node 150 when the response to these mea-
surement packets is processed by master node 110 and sent
back to slave node 150 or (ii) otherwise stress the timing-
recovery processing of slave node 150. The resulting packet
flow is transmitted from packet filter 130 to master node 110
via Ethernet link 120. Master node 110 then processes the
incoming measurement packet flow and sends a second, out-
going measurement packet flows to the packet filter 130 via
Ethernet link 120 in response to the incoming measurement
packets.

For example, the IEEE1588 protocol defines a Delay_Re-
quest and Delay_Response mechanism for this purpose. The
slave node sends Delay_Request packets to the master node,
and the master node returns a Delay Response packet for each
received Delay_Request packet. The slave node then uses the
transmit time of the Delay_Request packet and the arrival
time of the Delay_Response packet to compute the one-way
delay between the master and slave nodes. The packet filter
130 filters the measurement packet flow received via Ethernet
link 120 to (i) reduce the number of packets that will fall
within the anchor value window of slave node 150 when the
measurement packet flow arrives at slave node 150 or (ii)
otherwise stress the timing-recovery processing of slave node
150. The resulting filtered measurement packet flow is trans-
mitted from packet filter 130 to slave node 150 via Ethernet
link 140. Slave node 150 receives the individual packets in the
filtered packet flows and implements its timing-recovery pro-
cess to generate and transmit the recovered clock signal to test
equipment 180 via link 160. Test equipment 180 compares
the recovered clock signal received via link 160 with the
master clock signal received via link 170 and applies appro-
priate processing using applicable metrics, such as time inter-
val error (TIE), maximum TIE (MTIE), or time deviation
(TDEV), to assess the ability of slave node 150 to generate a
suitable recovered clock signal.

Because the master packet flow is transmitted over actual
Ethernet links 120 and 140, with packet filter 130 disabled
(i.e., allowing packets to flow without any additional delay),
the packets in that packet flow will have a natural delay
distribution like those in real-world networks. Depending on
the characteristics of those actual Ethernet links, that natural
delay distribution may have some packets that naturally arrive
at slave node 150 outside of the anchor value window.

By controlling packet filter 130, test configuration 100 can
be used to test the timing-recovery operations of slave node
150 for a wide variety of different packet-flow conditions
(e.g., having different rates of packets with delays within the
anchor value window). In one possible implementation of test
configuration 100, packet filter 130 and test equipment 180
can be configured into a real-world Ethernet network com-
prising master node 110 and slave node 150. In this way, the
stability of packets with delays within the anchor value win-
dow and the occurrence of anchor value shifts (e.g., delay-
floor shifts) will be controlled by the real-world network,
while the rate of occurrence of packets with delays within the
anchor value window (i.e., packets that fall within the slave
node’s anchor value window) will be controlled by both (i)
the real-world network and (ii) packet filter 130.

In certain implementations of test configuration 100 of
FIG. 1, packet filter 130 performs a modulo-based filtering
algorithm. According to the generic modulo-based filtering
algorithm, packet filter 130 evaluates the delay of all packets
in the packet flow received from master node 110 via Ethernet
link 120, assigns a modulo-counter value to each packet
whose delay falls within a specified delay window, and deter-
mines whether to adjust the delay of each counted packet by
comparing the corresponding assigned modulo-counter value
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to a specified threshold value. Depending on the particular
implementation, if the modulo-counter value is greater than
(less than) the specified threshold value, then packet filter 130
delays the counted packet by at least a specified delay offset
value before transmitting the counted packet towards slave
node 150 via Ethernet link 140, where the specified delay
offset value is sufficiently large to ensure that the counted
packet will be outside of the slave node’s anchor value win-
dow when it arrives at slave node 150. If the modulo-counter
value is not greater than (not less than) the specified threshold
value, then packet filter 130 transmits the counted packet
towards slave node 150 via Ethernet link 140 without adding
the specified delay offset value. Note that the specified delay
offset value could be any value larger than the size of the slave
node’s anchor value window.

For example, if (i) the modulo-counter values are generated
using a divisor value of 100 and (ii) the specified threshold
value is 50, then packet filter 130 will ensure that (at least)
50% of the counted packets will fall outside of the slave
node’s anchor value window. In that way, the timing-recovery
process of slave node 150 can be tested with a packet flow
having (no more than) half the number of delay-floor packets
than the number of packets with delays within the anchor
value window in the unfiltered packet flow. The specified
threshold value can be selectively increased or decreased to
test slave node 150 for a variety of different anchor value
packet rates. Note that, in general, any percentage P of pack-
ets can be achieved by selecting a divisor value D and a
threshold value T such that P=T/D.

Note that, in implementations that count only those
received packets that are within the slave node’s anchor value
window, packet filter 130 receives the current value of the
anchor value from slave node 150. In other implementations,
packet filter 130 counts all of the received packets without
determining whether they are inside or outside of the slave
node’s anchor value window. In those implementations,
packet filter 130 does not need to receive the current value of
the anchor value from slave node 150.

FIG. 2 shows a flow diagram of the processing of packet
filter 130 of FIG. 1 for an implementation that counts only
those received packets that are within the slave node’s delay-
floor window. In step 202, the modulo counter is reset such
that the current modulo-counter value M,,,,,,,=0. In step 204,
the next packet is received at packet filter 130 having an
incoming packet-delay value of D,. In step 206, it is deter-
mined whether the received packet is within the slave node’s
delay-floor window. In particular, if the received packet’s
incoming packet-delay value D, is less than the delay-floor
window size D above the slave node’s current packet delay-
floor Dgy,,,, then the received packet is within the slave
node’s delay-floor window and processing continues to step
208. Otherwise, the received packet is outside the slave
node’s delay-floor window and processing proceeds to step
212.

In step 208, the received packet is counted by incrementing
the modulo-counter value M. Note that, since M.,,,,,, 1s
generated by a modulo counter, if the incremented value is
equal to the specified modulo divisor value (e.g., 100 in the
previous example), then M, 1s reset to zero in step 208. In
step 210, it is determined whether M.,,,., is below the speci-
fied threshold value T, (.., 50 in the previous example).
If so, then processing proceeds to step 212. Otherwise, pro-
cessing proceeds to step 214.

If processing reaches step 212, then the specified delay
offset value should not be added to the received packet. In that
case, the outgoing packet delay D, is set equal to the
received packet’s incoming packet delay D,,. If processing
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reaches step 214, then the specified delay offset value should
be added to the received packet. In that case, the outgoing
packet delay D, is set equal to the received packet’s incom-
ing packet delay D, plus the specified delay offset value D,.

In either case, processing then proceeds to step 216, where
the received packet is output with the corresponding outgoing
packet delay D ,. Processing then returns to wait for the next
received packet to arrive at packet filter 130 at step 204.

Note that, for an implementation of packet filtering that
counts every received packet, step 206 would be omitted.

FIG. 3 shows graphical representations of the delay distri-
bution of a packet flow arriving at slave node 150 of FIG. 1
with and without the packet filtering of packet filter 130. In
FIG. 3, curve 302 represents the natural delay distribution of
the unfiltered packet flow. As shown in FIG. 3, in the natural
delay distribution of curve 302, many of the packets in the
unfiltered packet flow are delay-floor packets arriving within
the delay-floor window defined between the current delay-
floor Dg,,,, and a specified delay-floor threshold D, (150
microseconds in this example) above the current delay-floor.
The rest of the packets in the unfiltered packet flow are not
delay-floor packets that arrive outside the delay-floor win-
dow.

Curves 304 and 306 represent the effects of exemplary
packet filtering. In this example, packet filter 130 shifts more
than half of the delay-floor packets in the packet flow outside
of'the delay-floor window by adding the specified delay offset
value D, (200 microseconds in this example). In particular,
curve 306 represents those delay-floor packets that are shifted
outside of the delay-floor window by packet filter 130, while
curve 304 represents the remaining, unshifted delay-floor
packets. Note that, within the delay-floor window, the unfil-
tered packets of curve 304 retain the same temporal and
frequency delay variation characteristics of the unfiltered
packet flow of curve 302.

Note that the magnitudes of curves 302, 304, and 306 of
FIG. 3 are not quantitatively accurate and are intended only to
demonstrate qualitatively the effects of the packet filtering of
packet filter 130.

One other aspect to consider is selecting the delay offset
value D, relative to the defined delay-floor region (D) and
the maximum value of the un-filtered PDV distribution (D, ).
It may be desirable to select a delay offset value D, such that
the shifted distribution of curve 306 does not exceed the value
of D,,. This way the packet range of the filtered distribution
will be identical to that of the original distribution. Generally,
packet-based timing protocols rely on the periodic and
sequential delivery of timestamp-bearing packets to a
receiver. If the delay of a given timing packet is increased too
much, it may result in out-of-sequence delivery of that packet
atthe receiver, thus altering the initial scope of the evaluation,
i.e., evaluating clock performance with a stressed delay-floor.
Therefore, the delay offset value D, should be such that the
delay range of a given distribution is preserved.

Lastly, in order to allow an option to “shape” the filtered
delay distribution, the delay offset value D, can be modulated
over a range of delay values. These values can be selected
either randomly or deterministically using a periodic function
(sine, triangle wave, etc.). In keeping with the consideration
in the previous paragraph, the range of delay offset values D,
should be such that the maximum delay of the original distri-
bution is not exceeded by the filtered delay distribution.

FIG. 4 shows a flow diagram of the processing of packet
filter 130 of FIG. 1 for another implementation that counts
only those received packets that are within the slave node’s
delay-floor window, but adds a fixed amount of delay D, to
every received packet to account for packet processing delay
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by packet filter 130. In FIG. 4, steps 402-416 are identical to
steps 202-216 of FIG. 2 with the exception of steps 412 and
414, which include the fixed amount of delay D being added
to each received packet, whether it is counted or not.

In the implementations of FIGS. 1 and 2, packet filter 130
of FIG. 1 performs a modulo-based filtering algorithm. In
certain other implementations of test configuration 100 of
FIG. 1, packet filter 130 performs a random number-based
filtering algorithm. According to the generic random number-
based filtering algorithm, packet filter 130 assigns a random
value within a specified available range of values to packets in
the packet flow received from master node 110 via Ethernet
link 120 and determines whether to adjust the delay of each
packet by comparing the corresponding assigned random
value to a specified threshold value. Depending on the par-
ticular implementation, if the assigned random value is
greater than (less than) the specified threshold value, then
packet filter 130 delays the packet by at least a specified delay
offset value before transmitting the packet towards slave node
150 via Ethernet link 140, where, as before, the specified
delay offset value is sufficiently large to ensure that the
counted packet will be outside of the slave node’s delay-floor
window when it arrives at slave node 150. If the assigned
random value is not greater than (not less than) the specified
threshold value, then packet filter 130 transmits the counted
packet towards slave node 150 via Ethernet link 140 without
adding the specified delay offset value. Note that, as before,
the specified delay offset value could be any value larger than
the size of the slave node’s delay-tfloor window.

For example, if (1) the available range of random values is
0-1 and (ii) the specified threshold value is 0.5, then packet
filter 130 will ensure that (atleast) 50% of the packets will fall
outside of the slave node’s delay-floor window. In that way,
the timing-recovery process of slave node 150 can be tested
with a packet flow having (no more than) half the number of
delay-floor packets than the number of delay-floor packets in
the unfiltered packet flow. The specified threshold value can
be selectively increased or decreased to test slave node 150
for a variety of different delay-floor packet rates.

As before, in some implementations, packet filter 130
assigns random values to only a subset of the received pack-
ets, for example, only those packets received at packet filter
130 that have a packet delay that is within the slave node’s
delay-floor window. In those implementations, if a packet
arrives at the packet filter with a packet delay that is already
outside of the slave node’s delay-floor window, then that
packet is not assigned a random value by the packet filter and
therefore not delayed by the specified delay offset value. In
other implementations, packet filter 130 assigns random val-
ues to all of the received packets without determining whether
they are inside or outside of the slave node’s delay-tloor
window.

FIG. 5 shows a flow diagram of the processing of packet
filter 130 of FIG. 1 for an implementation that assigns random
values to only those received packets that are within the slave
node’s delay-floor window. Steps 504,506,512, 514, and 516
are identical to steps 204, 206, 212, 214, and 216, respec-
tively, of FIG. 2. Instead of incrementing a modulo counter as
in step 208 of FIG. 2, in step 508, packet filter 130 assigns a
random value R, to the received packet. In step 510, packet
filter 130 compares the assigned random value R, to the
specified threshold value P, to determine whether or not the
specified delay offset value D, should be added to the packet
delay.

Note that, as before, for an implementation of packet fil-
tering that assigns random values to every received packet,
step 506 would be omitted.
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FIG. 6 shows a flow diagram of the processing of packet
filter 130 of FIG. 1 for another implementation that assigns
random values to only those received packets that are within
the slave node’s delay-floor window, but adds a fixed amount
of delay Dy to every received packet to account for packet
processing delay by packet filter 130. In FIG. 6, steps 604-616
are identical to steps 504-516 of FIG. 5. with the exception of
steps 612 and 614, which include the fixed amount of delay
D, being added to each received packet, whether or not a
random value is assigned.

The modulo-based filtering algorithms of FIGS. 1 and 2
provide deterministic control over the rate at which delay-
floor packets arrive at slave node 150, while the random
number-based filtering algorithms of FIGS. 5 and 6 provide
statistical control over the rate at which delay-floor packets
arrive at slave node 150. The modulo scheme guarantees that
X of Y packets with delays that fall within the anchor value
window will be further delayed. The random number scheme
guarantees that (on the average) X of Y packets with delays
that fall within the anchor value delay window will be further
delayed. The modulo scheme may be useful for stressing the
maximum interval between packets with delays within the
anchor value window that a slave clock can tolerate. The
random number scheme may be useful for stressing the abil-
ity of a slave clock’s PDV filtering algorithm to find the
anchor value.

Other techniques for filtering the packet flow to control the
rate of delay-floor packets arriving at slave node 150 are also
possible. For example, the random number scheme could
generate a random number per a uniform distribution or some
other statistical distribution (Gaussian, Gamma, etc.) The
modulo scheme could vary the modulo-N count during the
test. For example, for each modulo count cycle, change the N
count interval to maintain the “approximate” ratio. For
example, if the goal is to filter out 50% of the packets with
delays within the anchor value window, the Tcount threshold
can be adjusted based on changes to the modulo-N counter.
So, if N=10, then Tcount will be 5. If N=50, then Tcount will
be 25. If N=51, then Tcount will be 26. This may be a way to
randomize the filtering interval for the modulo case.

In test configuration 100 of FIG. 1, packet filter 130 is
configured between master node 110 and slave node 150 by
both an upstream Ethernet link 120 and a downstream Ether-
net link 140, both of which links contribute to what would be,
in the absence of filtering by packet filter 130, the natural
delay distribution of the packet flow as it arrives at slave node
150. In the presence of filtering by packet filter 130, the delay
distribution of the packet flow that arrives at slave node 150 is
a combination of that natural delay distribution and the filter-
ing applied by packet filter 130, which adds at least the
specified delay offset value to a fraction of the packets in that
packet flow. That combination of effects to the delay distri-
bution of the packet flow can be applied in different orders.

For example, in test configuration 100 of FIG. 1, a first
portion of the natural delay distribution is initially contributed
by upstream Ethernet link 120, then the packet flow is filtered
by packet filter 130, and then a second portion of the natural
delay distribution is subsequently contributed by downstream
Ethernet link 140. In an alternative test configuration,
upstream Ethernet link 120 can be omitted, such that (i)
packet filter 130 is connected immediately downstream of
master node 110 and (ii) the delay distribution of the packet
flow arriving at slave node 150 will result from only the
filtering by packet filter 130, followed by the natural delay
distribution contributed by downstream Ethernet link 140.
Analogously, in another alternative test configuration, down-
stream Ethernet link 140 can be omitted, such that (i) packet
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filter 130 is connected immediately upstream of slave node
150 and (ii) the delay distribution of the packet flow arriving
at slave node 150 will result from only the natural delay
distribution contributed by upstream Ethernet link 120, fol-
lowed by the filtering by packet filter 130.

Alternatively, in these different test configurations, one or
each of Ethernet links 120 and 140 can be replaced by a
network cloud or other real-world apparatus that similarly
contributes to the natural delay distribution of the packet flow.

FIG. 7 shows a block diagram of an exemplary test con-
figuration 700 in which upstream Ethernet link 120 is
replaced by a network cloud 720. Otherwise, the elements of
test configuration 700 are identical to those of test configu-
ration 100. In test configuration 700, the delay distribution of
the packet flow arriving at slave node 150 results from a first
portion of the natural delay distribution initially contributed
by network cloud 720, followed by the packet filtering of
packet filter 130, followed by a second portion of the natural
delay distribution subsequently contributed by Ethernet link
140.

For this case, network cloud 720 is composed of, for
example, a plurality of packet switching or routing devices
interconnected by Ethernet or other packet-based links. In
addition, background packet traffic, not necessarily associ-
ated with network timing applications, can be present in the
network cloud and compete for transport resources with
packet traffic transmitted by master node 110. The resulting
packet delay variation as seen at the input to packet filter 130
for packets sent by master node 100 and transported in net-
work cloud 720 is referred to as the natural delay distribution.

Instead of or in addition to using Ethernet links and/or
network clouds to contribute a natural delay distribution to
the packet flow received at slave node 150, in alternative
embodiments, an appropriate network emulator can be used
to contribute a simulated portion to the natural delay distri-
bution.

FIG. 8 shows a block diagram of an exemplary test con-
figuration 800 in which (i) master node 110 of FIG. 1 has been
replaced by network emulator 810 and (ii) upstream Ethernet
link 120 has been replaced by Ethernet link 820. Note that test
configuration 800 can be implemented by configuring packet
filter 130 into an existing test configuration having a conven-
tional network emulator 810. In test configuration 800, the
delay distribution of the packet flow arriving at slave node 150
results from a first, simulated portion of the natural delay
distribution initially contributed by network emulator 810,
followed by the packet filtering of packet filter 130, followed
by a second, natural portion of the natural delay distribution
subsequently contributed by Ethernet link 140.

FIG. 9 shows a block diagram of another exemplary test
configuration 900 in which master node 110, upstream Eth-
ernet link 120, and packet filter 130 of FIG. 1 have been
replaced by network emulator 910 having a built-in packet
filter that performs packet filtering analogous to that provided
by packet filter 130. In test configuration 900, the delay dis-
tribution of the packet flow arriving at slave node 150 results
from a first, simulated portion of the natural delay distribution
initially contributed by network emulator 910, followed by
the packet filtering of network emulator 910, followed by a
second, natural portion of the natural delay distribution sub-
sequently contributed by Ethernet link 140.

In test configuration 900, the packet filter is downstream of
the PDV generator in network emulator 910. In alternative
embodiments, the packet filter could be upstream of the PDV
generator in a network emulator.

The basic application for this packet filter concept is to
cause stress conditions on packet flows used for timing recov-
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ery. Since each slave clock vendor may use a different timing
recovery algorithm, the timing performance of all slave
clocks cannot be directly assessed by using a single “stan-
dardized” set of stress patterns. For example, some timing
recovery algorithms may base their phase “anchor value” on
the stability of the delay floor. Still others may use a combi-
nation of statistical measurements that don’t involve the delay
floor. The packet filter concept applies an appropriate stress
condition to the slave clock under test.

The packet filter concept is capable of taking an existing
input PDV distribution and altering it to achieve an appropri-
ate stress condition. This technique of altering the PDV dis-
tribution of a packet flow used for timing can be used to
evaluate the performance margin of a slave node for specific
network scenarios. For example, if it is known that a slave
clock recovery process uses only those packets with delays
within 10 us ofthe delay floor, then the “density” of the lowest
10 us of the PDV distribution can be reduced deterministi-
cally using the packet filter, and the resulting timing recovery
performance can be measured for each level of reduction.

Typically, slave clocks only recover timing information
from those packets with favorable delay characteristics for a
given packet flow. For all other times, the slave clock will set
its timing recovery process to a “short-term holdover” mode
of operation. During this time, frequency and phase of the
slave clock’s local oscillator is not updated. Rather, the sta-
bility of the slave clock’s local oscillator determines the sta-
bility of the slave clock’s output clock signal. During this
time, the slave clock’s local oscillator stability is subject to a
variety of environmental factors that can influence its stability
(including temperature, voltage, and vibration). The longer
the interval between receiving packets with favorable delay
characteristics, the more likely the chance that the slave
clock’s performance will be degraded.

The packet filter concept uses two methods to reduce the
density of a targeted population of packet delays. The modulo
filtering method ensures that a deterministic number of pack-
ets with delays in a defined range will be filtered. This method
will generally create a periodic pattern of intervals of packets
with favorable delay characteristics. Therefore, the modulo
method can be used to control the length of short-term hold-
over mode in a repeatable pattern, thus evaluating the noise
caused by the local oscillator under stress conditions.

The random filtering method ensures that a “target aver-
age” number of packets with delays in the anchor value win-
dow will be filtered out. Statistical in nature, this filtering
approach will yield a different type of stress for the slave
clock recovery process. With fewer favorable packets to
derive the anchor value, slave clocks will be more susceptible
to noise based on the statistical windowing process vs. noise
caused by the local oscillator. In short, both the modulo and
random filtering methods stress different operating and per-
formance aspects of a slave clock and should both be consid-
ered.

Although test configurations have been described in the
context of Ethernet links, those skilled in the art will under-
stand that the present invention can be implemented using
other types of packet-based communication links, including
wireless links, which contribute to the natural delay distribu-
tion in the packet flow.

Embodiments of the invention may be implemented as
(analog, digital, or a hybrid of both analog and digital)) circuit-
based processes, including possible implementation as a
single integrated circuit (such as an ASIC or an FPGA), a
multi-chip module, a single card, or a multi-card circuit pack.
As would be apparent to one skilled in the art, various func-
tions of circuit elements may also be implemented as process-
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ing blocks in a software program. Such software may be
employed in, for example, a digital signal processor, micro-
controller, general-purpose computer, or other processor.

Also for purposes of this description, the terms “couple,”
“coupling,” “coupled,” “connect,” “connecting,” or “con-
nected” refer to any manner known in the art or later devel-
oped in which energy is allowed to be transferred between
two or more elements, and the interposition of one or more
additional elements is contemplated, although not required.
Conversely, the terms “directly coupled,” “directly con-
nected,” etc., imply the absence of such additional elements.

Signals and corresponding links, nodes, or ports may be
referred to by the same name and are interchangeable for
purposes here.

As used herein in reference to an element and a standard,
the term “compatible” means that the element communicates
with other elements in a manner wholly or partially specified
by the standard, and would be recognized by other elements
as sufficiently capable of communicating with the other ele-
ments in the manner specified by the standard. The compat-
ible element does not need to operate internally in a manner
specified by the standard.

Embodiments of the invention can be manifest in the form
of methods and apparatuses for practicing those methods.
Embodiments of the invention can also be manifest in the
form of program code embodied in tangible media, such as
magnetic recording media, optical recording media, solid
state memory, floppy diskettes, CD-ROMs, hard drives, or
any other non-transitory machine-readable storage medium,
wherein, when the program code is loaded into and executed
by a machine, such as a computer, the machine becomes an
apparatus for practicing the invention. Embodiments of the
invention can also be manifest in the form of program code,
for example, stored in a non-transitory machine-readable
storage medium including being loaded into and/or executed
by a machine, wherein, when the program code is loaded into
and executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the invention. When
implemented on a general-purpose processor, the program
code segments combine with the processor to provide a
unique device that operates analogously to specific logic cir-
cuits.

Any suitable processor-usable/readable or computer-us-
able/readable storage medium may be utilized. The storage
medium may be (without limitation) an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device. A more-specific, non-exhaustive list of
possible storage media include a magnetic tape, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM) or Flash memory, a por-
table compact disc read-only memory (CD-ROM), an optical
storage device, and a magnetic storage device. Note that the
storage medium could even be paper or another suitable
medium upon which the program is printed, since the pro-
gram can be electronically captured via, for instance, optical
scanning of the printing, then compiled, interpreted, or oth-
erwise processed in a suitable manner including but not lim-
ited to optical character recognition, if necessary, and then
stored in a processor or computer memory. In the context of
this disclosure, a suitable storage medium may be any
medium that can contain or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

The functions of the various elements shown in the figures,
including any functional blocks labeled as “processors,” may
be provided through the use of dedicated hardware as well as
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hardware capable of executing software in association with
appropriate software. When provided by a processor, the
functions may be provided by a single dedicated processor, by
a single shared processor, or by a plurality of individual
processors, some of which may be shared. Moreover, explicit
use of the term “processor” or “controller” should not be
construed to refer exclusively to hardware capable of execut-
ing software, and may implicitly include, without limitation,
digital signal processor (DSP) hardware, network processor,
application specific integrated circuit (ASIC), field program-
mable gate array (FPGA), read only memory (ROM) for
storing software, random access memory (RAM), and non
volatile storage. Other hardware, conventional and/or cus-
tom, may also be included. Similarly, any switches shown in
the figures are conceptual only. Their function may be carried
out through the operation of program logic, through dedicated
logic, through the interaction of program control and dedi-
cated logic, or even manually, the particular technique being
selectable by the implementer as more specifically under-
stood from the context.

It should be appreciated by those of ordinary skill in the art
that any block diagrams herein represent conceptual views of
illustrative circuitry embodying the principles of the inven-
tion. Similarly, it will be appreciated that any flow charts, flow
diagrams, state transition diagrams, pseudo code, and the like
represent various processes which may be substantially rep-
resented in computer readable medium and so executed by a
computer or processor, whether or not such computer or
processor is explicitly shown.

Digital information can be transmitted over virtually any
channel. Transmission applications or media include, but are
not limited to, coaxial cable, twisted pair conductors, optical
fiber, radio frequency channels, wired or wireless local area
networks, digital subscriber line technologies, wireless cel-
Iular, Ethernet over any medium such as copper or optical
fiber, cable channels such as cable television, and Earth-
satellite communications.

Unless explicitly stated otherwise, each numerical value
and range should be interpreted as being approximate as if the
word “about” or “approximately” preceded the value of the
value or range.

It will be further understood that various changes in the
details, materials, and arrangements of the parts which have
been described and illustrated in order to explain embodi-
ments of this invention may be made by those skilled in the art
without departing from embodiments of the invention encom-
passed by the following claims.

The use of figure numbers and/or figure reference labels in
the claims is intended to identify one or more possible
embodiments of the claimed subject matter in order to facili-
tate the interpretation of the claims. Such use is not to be
construed as necessarily limiting the scope of those claims to
the embodiments shown in the corresponding figures.

It should be understood that the steps of the exemplary
methods set forth herein are not necessarily required to be
performed in the order described, and the order of the steps of
such methods should be understood to be merely exemplary.
Likewise, additional steps may be included in such methods,
and certain steps may be omitted or combined, in methods
consistent with various embodiments of the invention.

Although the elements in the following method claims, if
any, are recited in a particular sequence with corresponding
labeling, unless the claim recitations otherwise imply a par-
ticular sequence for implementing some or all of those ele-
ments, those elements are not necessarily intended to be
limited to being implemented in that particular sequence.
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Reference herein to “one embodiment” or “an embodi-
ment” means that a particular feature, structure, or character-
istic described in connection with the embodiment can be
included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment, nor are separate or alternative embodi-
ments necessarily mutually exclusive of other embodiments.
The same applies to the term “implementation.”

The embodiments covered by the claims in this application
are limited to embodiments that (1) are enabled by this speci-
fication and (2) correspond to statutory subject matter. Non-
enabled embodiments and embodiments that correspond to
non-statutory subject matter are explicitly disclaimed even if
they fall within the scope of the claims.

What is claimed is:

1. A timing recovery method, comprising:

(a) determining, for a packet in a forward packet flow in a
packet-based network, whether or not to shift the packet
outside of an anchor value window of a timing-recovery
process;

(b) adding a specified non-zero delay offset value to an
incoming packet delay value for the packet to generate
an outgoing packet delay value for the packet when
determination is made to shift the packet outside of the
anchor value window, wherein the specified non-zero
delay offset value is sufficiently large to ensure the out-
going packet delay value for the packet will be outside of
the anchor value window when the packet arrives at a
slave node of the packet-based network, and wherein the
slave node is configured to perform the timing-recovery
process; and

(c) transmitting the packet towards the slave node with the
outgoing packet delay value.

2. The method of claim 1, further comprising:

(d) receiving a reverse measurement packet from the slave
node;

(e) determining whether or not to add an additional delay to
the reverse measurement packet;

(f) adding the additional delay to the reverse measurement
packet when determination is made to add the additional
delay to the reverse measurement packet;

(g) transmitting the reverse measurement packet to a mas-
ter node of the packet-based network;

(h) receiving a forward measurement packet from the mas-
ter node in response to the slave node; and

(1) transmitting the forward measurement packet to the
slave node.

3. The method of claim 1, wherein the specified non-zero
delay offset value is not added to the incoming packet delay
value for the packet in generating the outgoing packet delay
value when determination is made not to shift the packet
outside of the anchor value window.

4. The method of claim 1, further comprising: adding a
fixed delay to the incoming packet delay value for the packet
to account for processing delay in generating the outgoing
packet delay value independent of the determination of step
(a).

5. The method of claim 1, wherein step (a) further com-
prises:

(al) receiving the packet from a master node in the packet-

based network;

(a2) determining the incoming packet delay value for the
packet; and

(a3) determining whether or not the packet is inside the
anchor value window, wherein said determining
whether or not to shift the packet outside the anchor
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value window is performed after determination that the
packet is inside the anchor value window.
6. The method of claim 1, wherein step (a) further com-
prises:
5 (al) receiving the packet from a master node in the packet-
based network; and

(a2) determining the incoming packet delay value for the
packet, wherein said determining whether or not to shift
the packet outside the anchor value window is per-
formed independent of any determination of whether or
not the packet is inside the anchor value window.

7. The method of claim 1, wherein the method is performed
by a packet filter, and wherein the packet filter is a part of a
network emulator that generates the forward packet flow.

8. The method of claim 1, wherein the packet-based net-
work comprises at least one of:

an upstream link connecting the packet filter to a master
node of the packet-based network; and

a downstream link connecting the packet filter to the slave
node, wherein at least one of the upstream link and the
downstream link contributes at least a portion of a natu-
ral delay distribution to the forward packet flow.

9. The method of claim 1, wherein step (a) comprises:

(al) assigning a modulo count value to the packet;

(a2) comparing the assigned modulo count value to a speci-
fied threshold value; and

(a3) determining whether or not to shift the packet outside
of the anchor value window based on the comparison of
step (a2).

10. The method of claim 1, wherein step (a) comprises:

(al) assigning a random value to the packet;

(a2) comparing the assigned random value to a specified
threshold value; and

(a3) determining whether or not to shift the packet outside
of the anchor value window based on the comparison of
step (a2).

11. A packet filter communicatively couplable to a master
node and a slave node in a packet-based network, the packet
40 filter comprising:

a processor configured to:

(a) determine, for a packet in a forward packet flow in the
packet-based network, whether or not to shift the
packet outside of an anchor value window of a timing-
recovery process;

(b) add a specified non-zero delay offset value to an
incoming packet delay value for the packet to gener-
ate an outgoing packet delay value for the packet
when determination is made to shift the packet out-
side of the anchor value window, wherein the speci-
fied non-zero delay offset value is sufficiently large to
ensure the outgoing packet delay value for the packet
will be outside of the anchor value window when the
packet arrives at the slave node of the packet-based
network, and wherein the slave node is configured to
perform the timing-recovery process; and

(c) transmit the packet towards the slave node with the
outgoing packet delay value.

12. The packet filter of claim 11, wherein the processor is

60 further configured to:

(d) receive a reverse measurement packet from the slave
node;

(e) determine whether or not to add an additional delay to
the reverse measurement packet;

() add the additional delay to the reverse measurement
packet when determination is made to add the additional
delay to the reverse measurement packet;
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(g) transmit the reverse measurement packet to the master

node of the packet-based network;

(h) receive a forward measurement packet from the master

node in response to the slave node; and

(1) transmit the forward measurement packet to the slave

node.

13. The packet filter of claim 11, wherein the processor is
configured to determine whether or not to shift the packet
outside of the anchor value window of the timing-recovery
process by:

(al) receive the packet from the master node in the packet-

based network;

(a2) determine the incoming packet delay value for the

packet; and

(a3) determine whether or not the packet is inside the

anchor value window, wherein the processor determines
whether or not to shift the packet outside the anchor
value window after determination that the packet is
inside the anchor value window.

14. The packet filter of claim 11, wherein the processor is
configured to determine whether or not to shift the packet
outside of the anchor value window of the timing-recovery
process by:

(al) assign a modulo count value to the packet;

(a2) compare the assigned modulo count value to a speci-

fied threshold value; and

(a3) determine whether or not to shift the packet outside of

the anchor value window based on the comparison of the
assigned modulo count value and the specified threshold
value.

15. The packet filter of claim 11, wherein the processor is
configured to determine whether or not to shift the packet
outside of the anchor value window of the timing-recovery
process by:

(al) assign a random value to the packet;

(a2) compare the assigned random value to a specified

threshold value; and

(a3) determine whether or not to shift the packet outside of

the anchor value window based on the comparison of the
assigned random value to the specified threshold value.

16. A packet-based network, comprising:

a master node;

a slave node; and

a packet filter communicatively couplable to the master

node and the slave node, the packet filter configured to:

5

10

15

20

25

40

18

(a) determine, for a packet in a forward packet flow in the
packet-based network, whether or not to shift the
packet outside of an anchor value window of a timing-
recovery process;

(b) add a specified non-zero delay offset value to an
incoming packet delay value for the packet to gener-
ate an outgoing packet delay value for the packet
when determination is made to shift the packet out-
side of the anchor value window, wherein the speci-
fied non-zero delay offset value is sufficiently large to
ensure the outgoing packet delay value for the packet
will be outside of the anchor value window when the
packet arrives at the slave node of the packet-based
network, and wherein the slave node is configured to
perform the timing-recovery process; and

(c) transmit the packet towards the slave node with the
outgoing packet delay value.

17. The packet-based network of claim 16, wherein the
packet filter is configured to determine whether or not to shift
the packet outside of the anchor value window of the timing-
recovery process by:

(al) receive the packet from the master node in the packet-

based network;

(a2) determine the incoming packet delay value for the

packet; and

(a3) determine whether or not the packet is inside the

anchor value window, wherein the processor determines

whether or not to shift the packet outside the anchor
value window after determination that the packet is
inside the anchor value window.

18. The packet-based network of claim 16, wherein the
packet filter is a part of a network emulator that generates the
forward packet flow.

19. The packet-based network of claim 16, further com-
prising:

an upstream link connecting the packet filter to the master

node; and

a downstream link connecting the packet filter to the slave

node, wherein at least one of the upstream link and the

downstream link contributes at least a portion of a natu-
ral delay distribution to the forward packet flow.

20. The packet-based network of claim 16, wherein the
slave node is configured to transmit a current anchor value to
the packet filter.



